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Application
(From a press release)

Equens to offer RiskShield Fraud Protection for Card Payments

Today Equens, one of the largest pan-European card and payment 
Processors, announced that it has selected RiskShield from 
INFORM GmbH as the basis for a new approach to fraud 
detection and behaviour monitoring. By utilising 
the flexibility offered by RiskShield, Equens will be able to offer 
tailor-made fraud management services to issuers and acquirers.

UTRECHT, The Netherlands, 30/10/2012
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Fuzzy sets on discrete universes
Fuzzy set C = “desirable city to live in”

X = {SF, Boston, LA} (discrete and non-ordered)
C = {(SF, 0.9), (Boston, 0.8), (LA, 0.6)}

Fuzzy set A = “sensible number of children”
X = {0, 1, 2, 3, 4, 5, 6} (discrete universe)
A = {(0, .1), (1, .3), (2, .7), (3, 1), (4, .6), (5, .2), (6, .1)}
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Fuzzy sets & fuzzy logic
Fuzzy sets can be used to define a level of truth of 

facts
Fuzzy set C = “desirable city to live in”

X = {SF, Boston, LA} (discrete and non-ordered)
C = {(SF, 0.9), (Boston, 0.8), (LA, 0.6)}

corresponds to a fuzzy interpretation in which 
C(SF) is true with degree 0.9
C(Boston) is true with degree 0.8
C(LA) is true with degree 0.6

 membership function               can be seen as a →
(fuzzy) predicate.



Fuzzy logic formulas
Membership functions:

B=”City is beautiful”
C=”City is clean”

Formulas:

What is the truth value of such formulas for given x?

We need to define a meaning for the connectives



Fuzzy logic formulas
Standard interpretations of connectives in fuzzy logic:

Negation:

Conjunction:

Disjunction:



• General requirements:

– Boundary: N(0)=1 and N(1) = 0

– Monotonicity: N(a) > N(b) if a < b

– Involution: N(N(a)) = a
• Two types of fuzzy complements:

– Sugeno’s complement:

– Yager’s complement:
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• Basic requirements:

– Boundary: T(0, a) = T(a,0) = 0, T(a, 1) = T(1, a) = a

– Monotonicity: T(a, b) <= T(c, d) if a <= c and b <= d

– Commutativity: T(a, b) = T(b, a)

– Associativity: T(a, T(b, c)) = T(T(a, b), c)

Generalized intersection 
(Triangular/T-norm, logical and)



• Examples:

– Minimum: 

– Algebraic product: 

– Bounded product: 

– Drastic product:  

T ( a , b)=min(a , b)

T (a , b )=a⋅b

T (a , b )=max (0,( a+ b−1 ))

Generalized intersection
(Triangular/T-norm)

T (a , b )={
a if b=1
b if a=1
0 otherwise ]
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• Basic requirements:

– Boundary: S(1, a) = 1, S(a, 0) = S(0, a) = a
– Monotonicity: S(a, b) < S(c, d) if a < c and b < d

– Commutativity: S(a, b) = S(b, a)
– Associativity: S(a, S(b, c)) = S(S(a, b), c)

• Examples:

– Maximum: 

– Algebraic sum: 

– Bounded sum: 

– Drastic sum

S ( a ,b )=max(a ,b)

bababaS ⋅−+=),(

S ( a ,b )=min(1,( a+b ))



Maximum:
Sm(a, b)

Algebraic
sum:

Sa(a, b)

Bounded
sum:

Sb(a, b)

Drastic
sum:

Sd(a, b)
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Generalized De Morgan’s Law
T-norms and T-conorms are duals which support the 

generalization of DeMorgan’s law:
T(a, b) = N(S(N(a), N(b)))
S(a, b) = N(T(N(a), N(b)))

Tm(a, b)
Ta(a, b)
Tb(a, b)
Td(a, b)

Sm(a, b)
Sa(a, b)
Sb(a, b)
Sd(a, b)



Fuzzy if-then rules
General format:

If x is A then y is B
Examples:

If pressure is high, then volume is small
If a restaurant is expensive, then order small dishes
If a tomato is red, then it is ripe
If the speed is high, then apply the brake a little



A coupled with B

AA

B B

A entails B
y

xx

y

Implication in 
traditional logicCommon in Fuzzy logic

Interpretation of Implication



Use the T-norm...
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A entails B
Boolean fuzzy implication (based on                )

 Zadeh's max-min implication (based on                      )

Zadeh's arithmetic implication (based on              )

Goguen's implication

mR( x , y )=max (1−mA( x ) ,mB( y ))

¬A∨B

¬A∨( A∧B)

mR( x , y )=max (1−mA( x ) ,min (mA( x ) ,mB( y )))

¬A∨B
mR( x , y )=min (1−mA( x )+ mB( y ) ,1)

mR( x , y )=min (mB( x )/mA( y ) ,1)
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Fuzzy inference systems
Given a number of fuzzy rules:

if temperature is low, then set heating high
if air is dry, then set heating low

If we do the observation
temperature is 15c,
air humidity 30%

how do we set the heating?

Discussed here: Mamdani systems



Building blocks
Fuzzifier (in the simplest case, turn a measurement into a 

crisp set)
Rule base
Inference engine
Defuzzifier
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Mamdani Systems:
Illustration on case 1
When given are

a fuzzy rule A  B, where A and B are fuzzy sets defined →
by membership functions                and  

a measurement a for A
The membership function for A  B is defined by→

For a measurement a the membership for y is



Mamdani Systems:
Illustration on case 2
When rules contain multiple conditions, the min is 

taken over these conditions



Mamdani Systems:
Illustration on case 3



• Rule: if x is A then y is B
• Observation: x is A’ (fuzzy set)
• Conclusion: y is B’ (fuzzy set)

defined as follows:
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• Rule: if x is A and y is B then z is C
• Fact: x is A’ and y is B’
• Conclusion: z is C’
Graphic Representation
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Defuzzification rules
Centroid-of-area

Bisector of area

Mean of maximum

Smallest of maximum

Largest of maximum
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Mamdani - single input
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Mamdani - single input
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Mamdani - double input
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if X is Large and Y is Large  Z →
is positive Large



Mamdani - double input
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